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Abstract 

The periodic solutions of the Benjamin-Bona-Mahony (BBM) equation and the regularized Benjamin-Ono 

(rBO) equation demonstrate a characteristic of nonlinear stability under wavelength-sharing perturbations is the 

subject of this work. This work clarify that these perturbations are stable through analytical analysis, which 

advances our knowledge of the stability characteristics of these nonlinear wave equations. Further, in periodic 

and non-periodic (line) situations, this work enhances the global well-posedness conjecture associated with the 

rBO equation. The difficulties raised in these settings by the Cauchy problem are emphasized a great deal. In 

particular, we show that the widely used iteration strategy The application of the Duhamel formula to the 

Cauchy problem associated with the rBO equation proves to be ineffective in resolving such issues with 

negative Sobolev indices. This result points to a significant flaw in the usual iterative methods for solving these 

equations, requiring the development of new techniques or frameworks to handle the Cauchy issue when such 

indices are present. Additionally, the research advances our knowledge of the mathematical frameworks that 

underlie nonlinear wave equations, particularly with regard to the effects of regularization on stability and well-

posedness. The findings have ramifications for theoretical studies as well as real-world applications that include 

wave phenomena' stability and solvability. In summary, this study offers fresh perspectives on the behavior of 

the rBO and BBM equations and presents a more thorough framework for examining their stability and 

resolving related Cauchy issues. 

Keywords: Periodic wave solutions, Nonlinear wave stability, Modified Benjamino-Ono equation BBM 

equation (Benjamin-Bona-Mahony) 

1. Introduction 

The primary objective that underpins the current research initiative is to undertake a comprehensive and 

meticulous examination of the stability attributes and characteristics that are intrinsically linked to the periodic 

traveling wave solutions, which are of paramount importance in elucidating a myriad of phenomena, particularly 

within the context of two prominent nonlinear wave models that are widely employed to depict the complex 

dynamics associated with fluid flow; these models include, most notably, the regularized Benjamin-Ono 

equation, (ABD ELRAHMANet al. 2019) which is employed in this discourse will be designated as the rBO 

equation, in addition to the Benjamin-Bona-Mahony equation, which is frequently referred to by its acronym, 

the BBM equation. It is of considerable significance to highlight that the rBO equation is precisely articulated 

through a formal definition that encapsulates the fundamental components and mathematical constructs that 

govern the intricate behavior of the wave solutions we are investigating, (AJINKYAet al. 2020) thereby 

providing a robust framework for understanding the underlying mechanisms at play. Furthermore, this research 

seeks to contribute to the broader academic dialogue surrounding nonlinear wave phenomena by elucidating the 

stability characteristics inherent in these equations, thus enriching our understanding of their applications and 

implications in the field of fluid dynamics. 

𝑢𝑡 + 𝑢𝑥 + 𝑢𝑢𝑥 + ℋ𝑢𝑥𝑡 = 0 (1) 
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where H represents the Hilbert transform, which can be characterized through the Fourier transform in the 

following manner:  

𝑠𝑔𝑛(𝑘) = {−11𝑖𝑓 𝑘 < 0𝑖𝑓 𝑘 > 0                                                                (2) 

The regularized iteration of the Benjamin-Ono equation functions as a sophisticated mathematical construct that 

proficiently delineates the temporal progression and developmental characteristics of long-crested waves, (AL-

ALAWYet al. 2018) which are intricate phenomena emerging at the boundary where two immiscible fluids 

converge and engage in complex interactions. (ANSARI et al. 2019) This specific equation is of paramount 

importance across a diverse array of practical scenarios, which encompass, although are not confined to, the 

pycnocline that is situated within the profound depths of the ocean, as well as the two-layer hydrodynamic 

system that is generated as a consequence of the influx of freshwater from rivers into marine ecosystems, a 

subject that has been meticulously explored in the scholarly contributions of (BAABU et al. 2022). It is crucial 

to underscore the fact that this regularized equation bears a formal equivalence to the original Benjamin-Ono 

equation, which is frequently abbreviated as the BO equation for the sake of convenience and clarity in 

reference and analysis throughout the vast expanse of scientificliterature. 

𝑣𝑡 + 𝑣𝑥 + 𝑣𝑣𝑥 − ℋ𝑣𝑥𝑥 = 0 (3) 

(BHATTACHARYAet al. 2011) Initially introduced by the highly regarded mathematician Benjamin in his 

influential and foundational work, and subsequently elaborated upon by Ono in his extensive and thorough 

examination, this specific model equation fundamentally engages with the same theoretical structure as the 

rapidly oscillating Boussinesq equation, which is commonly denoted in scholarly literature as rBO. More 

precisely, (HERNÁNDEZ-HERNÁNDEZ et al. 2020) when one considers appropriately defined and suitably 

constrained initial conditions, the solutions represented by uuu in the context of equation (4) and vvv in relation 

to equation (1.2) display an astonishingly close resemblance to each other when they are evaluated for time ttt 

within the specified interval of [0, T][0, T][0, T], where it is imperative that TTT is sufficiently extensive to 

ensure the rigorous validity of the analysis being conducted. For additional insights and a more profound 

exploration into this intricate and complex subject matter, Moreover, the aforementioned reference offers an 

exhaustive comparative analysis that serves to illuminate the respective benefits and drawbacks associated with 

the utilization of equation (5) as opposed to equation (6) for the effective modeling of the sophisticated 

dynamics that it is essential to meticulously regulate and manage the propagation of long waves while ensuring 

that the amplitude remains at a modest and controlled level, thereby facilitating a balanced approach to the 

intricacies involved in wave dynamics. 

(HUSSAINet al. 2023) This scholarly research endeavor, which places significant emphasis on the myriad of 

challenges that are inherently linked to the exploration and understanding of traveling wave solutions, seeks to 

systematically investigate and illuminate a crucial qualitative aspect pertaining to the complex nature of 

nonlinear dispersive equations that are prevalent in various fields of study. (KUMAR et al. 2021) The outcomes 

and interpretations of this investigation may vary considerably based on the specific boundary conditions that 

are imposed upon the mathematical framework and physical scenarios under consideration, thereby influencing 

the overall dynamics and characteristics of the solutions derived from these equations. In light of this, it 

becomes essential to meticulously analyze the interplay between the traveling wave solutions and the imposed 

boundary conditions, as this relationship is pivotal for advancing our comprehension of the intricate behaviors 

exhibited by nonlinear dispersive equations in diverse applications that exert a significant influence over the 

morphological characteristics of the wave, these solutions can manifest either as solitary waves, which are 

characterized by their localized nature, or they can take the form of periodic waves, (OGBEZODEeet al. 2023) 

which exhibit a repetitive structure over time. Over the course of over the course of the preceding two decades, 

an extensive and substantial corpus of academic literature has been dedicated to the rigorous examination and 

thorough investigation of the existence of solitary-wave solutions, their nonlinear robustness, and potential 

instability, which are of considerable interest within the field of mathematical physics. This expansive and 

multifaceted research endeavor has employed a diverse array of sophisticated methodologies and theoretical 

frameworks, (RUKHSAR et al. 2022) which have collectively played a crucial role in enhancing and enriching 
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the scholarly discourse surrounding this complex topic. A plethora of innovative and avant-garde techniques 

have been developed and applied in the pursuit of a deeper understanding of these phenomena, reflecting the 

dynamic and evolving nature of research in this area. Consequently, the culmination of these scholarly efforts 

has significantly advanced the field, providing valuable insights and fostering further inquiry into the underlying 

principles governing solitary waves and their behaviors meticulously formulated to accurately identify these 

solitary responses, and sufficiently comprehensive parameters have been meticulously delineated to ascertain 

their stability or instability, as has been thoroughly detailed in a wide range of scholarly sources, (SHEHA et al. 

2023) In stark contrast to this extensive body of work, the exploration of periodic traveling wave solutions has 

not garnered as much scholarly attention; however, it is noteworthy that In the last few years, there has been a 

remarkable and significant increase in the volume and intensity of scholarly research endeavors and 

investigative activities across various fields of study, (TANVIRet al. 2023) which highlights a growing trend 

towards a more rigorous and comprehensive exploration of diverse topics that reflect the evolving interests and 

needs of the academic community and society at large  related to this particular area of study, with a plethora of 

relevant papers emerging. 

The resolutions concerning recurring traveling waves of interest are given by 𝜓(𝑥, 𝑡) = 𝜙(𝑥 − 𝑐𝑡), When the 

differentiable function ϕ:ℝ→ℝ is with period 2L with c≠1. Executing the integration process, assigning the 

integration constant a value of zero, and subsequently substituting this waveform into equation (4) gives: 

𝜙𝑐(𝑥) =
4(𝑐 − 1)

1 + (
𝑐−1

𝑐
𝑥)

2 (4) 

By employing Employing Benjamin's characterization of The resolution for oscillatory propagating waves 

pertaining to the BO problem, we establish the existence of a smooth curve 𝑐 → 𝜙𝑐possesses a foundational 

interval characterized by Equation (5) 2L has positive, even, periodic solutions. 

 

𝜙𝑐(𝜉) =
2𝑐𝜋

𝐿

sinh (𝜂)

cosh (𝜂) − cos (
𝜋𝜉

𝐿
)

(5) 

with 𝜂 satisfying 

𝜂(𝑐) = tanh−1 (
𝑐𝜋

(𝑐 − 1)𝐿
) (6) 

with L>πL > \piL>π and c>LL−πc > \frac{L}{L - \pi}c>L−πL. The primary objective of our discourse in this 

context is to engage in a thorough and comprehensive investigation into the stability characteristics of these 

periodic waveforms, which are of critical importance in the broader field of wave dynamics. In light of our 

extensive and well-established expertise concerning the intricate nature of nonlinear dispersive evolution 

equations, we have come to a profound understanding that the presence of traveling waves, when they occur, is 

instrumental and pivotal in shaping the evolution of a wide array of disturbances that may arise in various 

systems. Consequently, it is with great expectation and anticipation that we assert that the detailed examination 

of the stability of periodic waves will emerge as a significant domain of inquiry, rich with complexity and ripe 

for exploration, offering numerous insights into the underlying phenomena. Therefore, it is our firm belief that 

delving into this area will not only enhance our theoretical understanding but also contribute valuable 

knowledge to the scientific community at large, highlighting the intricate interplay between wave stability and 

nonlinear dynamics. 

Of constructive, even, periodic solutions characterized by a fundamental period for Equation (7) 

𝐸(𝑢) =
1

2
∫ (𝑢ℋ𝑢𝑥 −

1

3
𝑢3) 𝑑𝑥  and 𝐹(𝑢) =

1

2
∫ (𝑢2 + 𝑢ℋ𝑢𝑥)𝑑𝑥 (7) 
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and that 𝜙𝑐constitutes a significant element of the operational 𝐸 + (𝑐 − 1)𝐹, In other terms, we employ the 

following equation given in (8). Additionally, it is necessary to consider the a specific spectral configuration 

associated with the nonlocal operator. 

.

ℒ = 𝑐ℋ ∂𝑥 + 𝑐 − 1 − 𝜙𝑐 (8) 

in the domain of periodic structures, particularly when scrutinizing the operator referred to as LLL, it is of 

particular significance to note that this operator is endowed with a singular negative eigenvalue, which is 

remarkable not only for its existence but also for its simplicity, while simultaneously, the eigenvalue 

corresponding to zero also demonstrates a similar simplicity and is associated with the eigenfunction denoted as 

ϕc′. Additionally, it is imperative to underscore the fact that the remaining portion of the spectrum is distinctly 

delineated commencing from zero which consequently amplifies our comprehension of the spectral 

characteristics that are at play. To meticulously establish these spectral conditions in a rigorous manner, we 

draw upon the groundbreaking theory, which adeptly leverages the beneficial attributes intrinsic to the Fourier 

transform of the eigenfunction ϕc′. In order to proficiently derive the Fourier coefficients that pertain to the 

function ϕc′, we employ the Poisson Summation theorem, a fundamental and widely recognized tool that plays a 

crucial role in constructing the profile as delineated in equation (8). This specific approach to determining 

periodic profiles not only reveals substantial potential but also represents a promising pathway for the 

investigation of analogous issues within this particular field of inquiry. Ultimately, this thorough investigation 

significantly enriches the overarching dialogue surrounding spectral analysis and its myriad applications across 

diverse mathematical frameworks, thereby contributing to the ongoing evolution of knowledge in this area. 

Moreover, the implications of this research extend beyond theoretical boundaries, suggesting possible practical 

applications that could emerge from a deeper understanding of these spectral properties. Consequently, it is 

evident that the pursuit of this line of inquiry holds the potential to yield fruitful insights and advancements in 

both theoretical and applied mathematics. 

Previous scholarly investigations that were meticulously conducted by esteemed researchers Spector and Miloh, 

as duly cited in their academic publication, have significantly clarified and illuminated the findings Given that 

the Benjamin-Ono (BO) equation is linked to a specific normalized category of periodic solutions, which is 

characterized by the specific profiles that are delineated in the mathematical formalism of equation (9), 

demonstrate a notable form of linear stability that is essential for understanding the dynamics of such solutions. 

The remarkable and noteworthy outcomes of their comprehensive research endeavors were achieved through the 

strategic leveraging of the inherent property that the BO equation possesses, which is its classification as 

completely integrable, thereby facilitating the effective application of the inverse scattering transform, a highly 

potent and sophisticated analytical tool in the field of mathematical physics. However, it is paramount to 

highlight that the current study distinctly diverges from the methodological paradigm established by their 

previous work, as it consciously opts not to employ the particular technique that they utilized for the thorough 

and exhaustive analysis of the operator LLL as articulated in equation (9). As a result of this deliberate 

methodological shift, this indicates a clearly distinct approach in the examination and analysis of the operator, 

which may potentially yield a variety of different insights, interpretations, or conclusions that stand in contrast 

to those that were derived from the previously established and utilized technique employed by Spector and 

Miloh. Such divergence in methodological framework may not only enrich the discourse within this domain of 

study but also pave the way for new avenues of research that could further enhance our understanding of the 

complex dynamics associated with the BO equation and its related operators. Ultimately, this study aspires to 

contribute to the ongoing academic dialogue by providing fresh perspectives and possibly innovative findings 

that could challenge or expand upon the established knowledge in the field.  

We extend the theoretical framework to a more extensive category of regularized equations in the latter portion 

of this study. We investigate a diverse array of equations of the form 

𝑢𝑡 + 𝑢𝑥 + 𝑢𝑝𝑢𝑥 + 𝐻𝑢𝑡 = 0 (9) 
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in the realm of periodic functions, the symbol H signifies a differential or pseudo-differential operator, with p 

being an integer such that p≥1. Many practical equations exhibit this form. For example, with 𝐻 = − ∂𝑥′
2 The 

generalized Benjamin-Bona-Mahony equation has been derived. Notably, this simplifies to the BBM equation 

when p is equal to 1 with 𝐻 = 𝐻 ∂𝑥, we derive the generalized regularized Benjamin-Ono equatiom. Such 

generalizations previously investigated within the context of solitary wave phenomena and analyzed the spectral 

stability of periodic traveling wave solutions pertaining to the generalized BBM equation in a periodic 

framework. For c>1, she established the criterion for spectral stability when 1 ≤ 𝑝 ≤ 2and establishing the 

pivotal velocity c_p, for p≥3, at which the wave phenomena exhibit stability for 𝑐 ∈ (𝑐𝑝,
𝑝

𝑝−3
) and unstable for ∈

(1, 𝑐𝑝) ∪ (
𝑝

𝑝−3
, ∞). Additionally, A specific collection of BBM equations was analyzed to explore the orbital 

stability of various generalized BBM and Camassa-Holm equations defined by this form. 

𝑢𝑡 + 2𝜔𝑢𝑥 + 3𝑢𝑢𝑥 − 𝑢𝑥𝑥𝑡 = 0, 𝜔 ∈ ℝ                                          (10) 

They demonstrated the existence of solutions characterized by the cnoidal form has been established, yet the 

verification of the orbital stability of these solutions has only been demonstrated in the specific scenario where 

ω=0. In relation to the periodic wave solutions pertinent to the equations under investigation, we meticulously 

articulate appropriate criteria that facilitate the attainment of nonlinear stability form (11), which exhibit a 

periodic structure analogous to that of the foundational wave, thereby ensuring that the system can withstand 

any form of periodic perturbation that may arise. To illustrate the practical application of our theoretical 

findings, we provide a detailed example wherein we rigorously analyze The resolutions of the Benjamin-Bona-

Mahony equation characterized by cnoidal waveforms, commonly referred to as the BBM equation, which is 

characterized by a specific wave profile that serves as a focal point of our study and highlights the nuances of 

stability in nonlinear wave dynamics. This comprehensive exploration not only contributes to the existing body 

of knowledge surrounding wave stability but also emphasizes the critical interplay between mathematical 

formulations and the physical phenomena they aim to describe, thereby enhancing our understanding of 

nonlinear wave behavior in various contexts. By 

𝜙𝑐(𝑥) = 𝛼1 + 𝛼2cn2(𝛼3𝑥; 𝑘) (11) 

It is our firmly held belief that the extensive and thorough stability analysis we have meticulously conducted 

yields a plethora of profound insights that are directly relevant to the complex and multifaceted behavior 

exhibited by dispersive systems, which are not only fundamental to a wide array of physical phenomena but also 

play a crucial role in various practical applications across multiple scientific fields. Furthermore, the innovative 

methodology we have adeptly employed in our comprehensive analysis has the remarkable potential to 

significantly enhance and streamline practical numerical simulations; this is particularly pertinent for those 

simulations that are aimed at accurately modeling intricate scenarios such as the dynamic interactions of water 

waves occurring at the interface between two distinctly different fluids or the intricate behavior of gravity waves 

within the long-wave regime, a phenomenon that is essential for a deeper understanding of numerous natural 

processes and events. In light of these carefully considered points, our research not only makes substantial 

contributions to the theoretical understanding of dispersive systems but also paves the way for the development 

of more accurate and efficient computational techniques, which can be effectively applied across various 

disciplines within the expansive field of fluid dynamics and potentially beyond its immediate boundaries. Thus, 

the implications of our findings extend far beyond mere theoretical discourse, impacting practical applications 

and fostering advancements in computational methods that hold promise for a myriad of scientific inquiries. 

A quartet of parameterized spatially periodic traveling wave solutions pertaining to the generalized Benjamin-

Bona-Mahony equation, denoted by the symbol φ(⋅;p), has recently undergone a stability. Specifically, Johnson 

demonstrated that periodic waves with For all periodic disturbances occurring within the continuous 

submanifold, waves characterized by a sufficiently large fundamental period or sufficiently extended 

wavelengths exhibit nonlinear stability for the range of 1≥p<4  defined by𝐻𝑝𝑒𝑟
1 of codimension two, 
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Σ𝑝 = {𝑓 ∈ 𝐻𝑝𝑒𝑟
1 : ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝜑(𝑥; 𝑝)𝑑𝑥, ∫ 𝑓2(𝑥) + 𝑓′2(𝑥)𝑑𝑥

= ∫ 𝜑2(𝑥; 𝑝) + 𝜑′2(𝑥; 𝑝)𝑑𝑥}                  (12) 

We intend to implement our methodology to establish a stability framework for both the revised BBM equation 

(p=2) and the notable BBM equation (p=4)under any periodic perturbation. 

This study's subsequent focus pertains to the well-posedness dilemma associated with In the context of periodic 

Sobolev spaces, the rBO equation𝐻per 
𝑠 ([−𝐿, 𝐿]) or 𝐻𝑠(ℝ). Indeed, we illustrate that when s>1/2, the rBO is 

consistently well-posed. To our knowledge, this information has not been previously documented. Our results 

build upon Mammeri's estimation from regarding the mathematical formulation for periodic rBO is delineated. 

In his scholarly work, he articulates a comprehensive theorem regarding the equation's global well-

posedness.

𝑢𝑡 + 𝑢𝑥 + 𝛼𝑢𝑢𝑥 + 𝛽ℋ𝑢𝑥𝑡 = 0 (13) 

where 𝛼 and 𝛽 are constants such that 0 < 𝛼, 𝛽 ⩽ 1. Mammeri also proved that the Cauchy problem associated 

to Eq. (1.11) is globally well-posed in 𝐻0
𝑠([−𝐿, 𝐿]), for 𝑠 > 1/2, where 𝐻0

𝑠([−𝐿, 𝐿]) means the elements 𝑓 of 

𝐻𝑠([−𝐿, 𝐿])has zero mean. Given our aspiration to provide a stable environment, 

The rBO equation in 𝐻𝑠(ℝ) with 𝑠 ≥
3

2
. Given the conservation laws in (1.7), 𝐻1/2(ℝ) (or 𝐻per

1/2
 ) appears to be 

a suitable space for studying the Cauchy problem for Eq. (13). This problem remains open in 𝐻𝑠(ℝ) (or 𝐻per 
𝑠  ) 

with 𝑠 ≤
1

2
, and one of the objectives of this paper is to identify some challenges in solving it through iterative 

methods. Specifically,  demonstrate that the data-to-solution map cannot be 𝐶2 for 𝑠 < 0 in both the periodic 

and non-periodic case. 

Ultimately, the meticulous structure and precise organization of this scholarly article are clearly delineated and 

articulated as follows: embark on a comprehensive introduction of a meticulously crafted series of notational 

conventions that will serve as a consistent and reliable framework for reference as well as clarity throughout the 

entirety of this expansive and in-depth work. Transitioning undertake a rigorous and thorough examination, 

coupled with a subsequent proof of both global well-posedness and ill-posedness results, addressing these 

complex phenomena within the multifaceted contexts of both periodic and nonperiodic settings, thereby 

illuminating the intricate complexities that are inherently present within these advanced mathematical 

constructs. In Section 4, delve deeply into an exploration of the existence of periodic traveling waves, 

employing the powerful and widely respected analytical tool known as the Poisson Summation theorem to 

robustly substantiate our claims and findings regarding such waves, thus enhancing the overall depth of our 

investigation. The discussion then seamlessly proceeds to Section 5, where we meticulously outline the crucial 

spectral properties that are absolutely indispensable for establishing the nonlinear stability of the systems under 

consideration, thereby laying a solid groundwork for our subsequent and more detailed analyses. Advancing to 

Employing the foundational principles, we meticulously assess the stability it examine periodic traveling waves 

and concepts that have been previously articulated in the literature, thereby significantly enhancing our 

understanding of the dynamic behavior of waves. Finally, present a comprehensive and expansive extension of 

the theoretical framework that is pertinent to the regularized Benjamin-Ono equation (rBO), utilizing this 

broadened theoretical approach to rigorously demonstrate the stability of cnoidal waves that are intricately 

associated with the well-known and widely studied Benjamin-Bona-Mahony (BBM) equation. Through this 

systematic and well-structured organization, we aim to provide both clarity and coherence in the presentation of 

our research findings, ensuring that readers can easily navigate through the complexities and nuances of the 

subject matter. Each section is thoughtfully designed not only to build upon the knowledge established in the 

previous sections but also to contribute significantly to a holistic understanding of the phenomena being 

meticulously studied. Thus, we earnestly invite readers to engage deeply and critically with the rich material 

presented within this article, fostering a greater appreciation for the intricate relationships that exist within the 

expansive realm of wave dynamics and stability analysis. 
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2. Notes and introduction 

Our notation follows standard conventions in partial differential equations; for more details, Let 𝑃 = 𝐶per 
∞  denote 

the set of all functions 𝑓: ℝ → ℂ that are 𝐶∞ and periodic with period 2𝐿 > 0. Let 𝑃′ represent the set of 

periodic distributions. If Ψ ∈ 𝑃′, we denote the value of Ψ at 𝜑 by Ψ(𝜑) = ⟨Ψ, 𝜑⟩. The Fourier transform of 

Ψis the function Ψ̂: ℤ → ℂ given by the formula Ψ̂(𝑘) =
1

2𝐿
⟨Ψ, Θ𝑘⟩, where Θ𝑘(𝑥) = exp (

𝜋𝑖𝑘𝑥

𝐿
) for 𝑘 ∈ ℤ and 

𝑥 ∈ ℝ. Therefore, if Ψ is a periodic function with period 2𝐿, we have 

Ψ̂(𝑘) =
1

2𝐿
∫  

𝐿

−𝐿
Ψ(𝑥)𝑒−

𝑖𝑘𝜋𝑥

𝐿 𝑑𝑥    (14) 

For 𝑠 ∈ ℝ, the Sobolev space of order 𝑠, denoted by 𝐻per
𝑠 ([−𝐿, 𝐿]), consists of all 𝑓 ∈ 𝑃′ such that (1 +

|𝑘|2)𝑠/2𝑓(𝑘) ∈ ℓ2(ℤ). The norm is given by ∥ 𝑓 ∥𝐻per
𝑠

2 =
1

2𝐿
∑𝑘=−∞

∞  (1 + |𝑘|2)𝑠|𝑓(𝑘)|2. For 𝑠 = 0, 𝐻per
0  is 

denoted by 𝐿per
2 , with (𝑓, 𝑔) = ∫

−𝐿

𝐿
 𝑓‾𝑔𝑑𝑥 and ∥⋅∥𝐻per

0 =∥⋅∥𝐿per
2 . 

If 𝑌 is a Banach space and 𝑇 > 0, then 𝐶([0, 𝑇]; 𝑌) is the space of continuous functions from [0, 𝑇] to 𝑌. For 

𝑘 ≥ 0, 𝐶𝑘([0, 𝑇]; 𝑌) denotes the subspace of functions 𝑡 ↦ 𝑢(𝑡) such that ∂𝑡
𝑗
𝑢 ∈ 𝐶([0, 𝑇]; 𝑌) for 0 ≤ 𝑗 ≤ 𝑘, 

where the derivative is understood in the sense of vectorvalued distributions. This space is equipped with the 

standard norm 

∥ 𝑢 ∥𝐶𝑘([0,𝑇];𝑌)= ∑  𝑘
𝑗=0 max

0⩽𝑡⩽𝑇
 ∥∥∂𝑡

𝑗
𝑢(𝑡)∥∥𝑌

    (15) 

Finally 𝜇(𝐴)denotes the Lebesgue measure associated with the set A.  

Subsequently, the Poisson Summation theorem is established. The identification of periodic traveling wave 

solutions for the rBO and BBM equations, respectively, will prove advantageous in equation 16 and 17. 

Theorem  Let 𝑓ℝ(𝜉) = ∫
−∞

∞
 𝑓(𝑥)𝑒−2𝜋𝑖𝑥𝜉𝑑𝑥 and 𝑓(𝑥) = ∫

−∞

∞
 𝑓ℝ(𝜉)𝑒2𝜋𝑖𝑥𝜉𝑑𝜉 satisfy 

|𝑓(𝑥)| ⩽
𝐴

(1+|𝑥|)1+𝛿  and |𝑓ℝ(𝜉)| ⩽
𝐴

(1+|𝜉|)1+𝛿    (16) 

where 𝐴 > 0 and 𝛿 > 0 (then 𝑓 and 𝑓 can be assumed continuous functions). Thus, for 𝐿 > 0 

∑  ∞
𝑛=−∞ 𝑓(𝑥 + 2𝐿𝑛) =

1

2𝐿
∑  ∞

𝑛=−∞ 𝑓ℝ (
𝑛

2𝐿
) 𝑒

𝜋𝑖𝑛𝑥

𝐿    (17) 

3. Outcomes concerning the rBO regarding criteria of well-posedness and ill-posedness. 

In the preliminary stages of our extensive and meticulous inquiry into the ramifications of the rBO equation, we 

will systematically and rigorously establish a comprehensive array of pivotal findings that are fundamentally 

intertwined with the well-posedness issue, which, as we will elucidate, can emerge in both periodic and 

nonperiodic scenarios, consequently offering a solid and coherent framework for our analytical endeavors. It is 

of paramount significance to emphasize that the theoretical insights gleaned from the periodic context will 

undeniably serve as an essential foundation as we embark upon the complex exploration of the nonlinear 

stability associated with the waveform solutions that are derived, ultimately empowering us to formulate deeper 

and more nuanced interpretations regarding their dynamic behavior under a multitude of varying conditions and 

circumstances. 

In the context of a Banach space (X), we characterize the initial value problem (IVP) associated as locally well-

posed if there exists a unique solution within a specified temporal interval [−𝑇, 𝑇]The resolution delineates a 

continuous trajectory in the space X within the specified interval (distinct existence)[−𝑇, 𝑇] whenever the initial 
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data belongs to 𝑋 (persistence), and the solution varies continuously depending upon the initial data (continuous 

dependence) i.e., we have the continuity of the application 𝑢0 → 𝑢(𝑡) from 𝑋 to 𝐶([0, 𝑇]; 𝑋). We say that the 

IVP associated to  and is globally well-posed in 𝑋 if the same properties hold for all time 𝑇 > 0. If some 

property in the definition of locally well-posed fails, we say that the IVP is ill-posed. 

3.1. Ill-posedness in 𝑯per 
𝒔  and 𝑯𝒔(ℝ) with 𝒔 < 0 

In this subsection, we demonstrate that the data-to-solution mapping for the Cauchy problem associated with the 

rBO equation is not C^2 at the origin when considering initial data in𝐻per 
𝑆  (or 𝐻𝑠(ℝ) ), with 𝑠 < 0. As a result, 

the Contraction Principle cannot be applied to solve the integral equation (18), as detailed below. 

To begin, we examine the problem in the periodic setting. For simplicity, we focus on functions of period 2𝜋. 

We understand that the linearized problem associated with equation (18) and initial data ψ\psiψ yields the 

solution nnn. 

𝑢(𝑥, 𝑡) = 𝑆(𝑡)𝜓(𝑥) = ∑  

+∞

𝑛=−∞

𝑒
𝑖𝑛𝑥−

𝑖𝑛

1+|𝑛|
𝑡
𝜓̂(𝑛)                                                 (18) 

Now, if 𝑢 is solution of (19), then by Duhamel principle we have that 

𝑢(𝑥, 𝑡) = 𝑆(𝑡)𝜓(𝑥) − ∫  
𝑡

0

 𝑆(𝑡 − 𝜏)Λ[𝑢(𝑥, 𝜏)𝑢𝑥(𝑥, 𝜏)]𝑑𝜏 (19) 

where Λ𝑢̂(𝑛) = (1 + |𝑛|)−1𝑢̂(𝑛). 

The following theorem is the principal result of this section. 

Theorem. Let 𝑠 < 0 and 𝑇 a positive number. Then there does not exist a space 𝑋𝑇 continuously embedded in 

𝐶([−𝑇, 𝑇]; 𝐻per 
𝑠 ) such that there exist 𝑐0 > 0 satisfying 

∥ 𝑆(𝑡)𝜓 ∥𝑋𝑇
⩽ 𝑐0 ∥ 𝜓 ∥𝐻𝑝𝑒𝑟

𝑠 , ∀𝜓 ∈ 𝐻𝑝𝑒𝑟
𝑠 (20) 

and 

∥∥
∥∥∫  

𝑡

0

 𝑆(𝑡 − 𝜏)Λ[𝑢𝑥(𝜏)𝑢(𝜏)]𝑑𝜏
∥∥
∥∥

𝑋𝑇

⩽ 𝑐0 ∥ 𝑢 ∥𝑋𝑇
2 , ∀𝑢 ∈ 𝑋𝑇 (21) 

Proof. Suppose by contradiction that there exists such a space. Consider 𝜓 ∈ 𝐻per 
𝑠  and define : = 𝑆(𝑡)𝜓. Then, 

from (3.3) we have that 𝑢 ∈ 𝑋𝑇 and since 𝑋𝑇 ↪ 𝐶([−𝑇, 𝑇]; 𝐻𝑝𝑒𝑟
𝑠 ), we get from (22) that 

∥∥
∥∥∫  

𝑡

0

 𝑆(𝑡 − 𝜏)Λ[𝑆(𝑡)𝜓(𝑆(𝑡)𝜓)𝑥]𝑑𝜏
∥∥
∥∥

𝐻𝑝𝑒𝑟
𝑠

⩽ 𝑐0 ∥ 𝜓 ∥𝐻𝑝𝑒𝑟
𝑠

2 (22) 

Next we prove that choosing 𝜓, appropriately, (23) does not hold. In fact, consider(𝑥): =

𝑁−𝑠cos (𝑁𝑥),  with 𝑁 ∈ ℕ, 𝑁 ≫ 1.  

 

 

𝜓It easy to see that 𝑆(𝑡)𝜓(𝑥) = 𝑁−𝑆cos (𝑁𝑥 −
𝑁

1+𝑁
𝑡). Then, 
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𝜑(𝑥, 𝑡): = ∫  
𝑡

0

 𝑆(𝑡 − 𝜏)Λ[𝑆(𝑡)𝜓(𝑥)(𝑆(𝑡)𝜓(𝑥))𝑥]𝑑𝜏

= −
1

2
𝑁−2𝑠+1 ∫  

𝑡

0

 𝑆(𝑡 − 𝜏)Λ [sin (2𝑁𝑥 −
2𝑁

1 + 𝑁
𝜏)] 𝑑𝜏                   (23)

 

Now, using the specific form of Λ we obtain that 

∫  
𝑡

0

 𝑆(𝑡 − 𝜏)Λ [sin (2𝑁𝑥 −
2𝑁

1 + 𝑁
𝜏)] 𝑑𝜏 =−

1

2(1 + 2𝑁)𝛾𝑁

[𝑒𝑖(2𝑁𝑥−
2𝑁

1+2𝑁
𝑡) − 𝑒𝑖(2𝑁𝑥−

2𝑁

1+𝑁
𝑡)]

+
1

2(1 + 2𝑁)𝛾𝑁

[𝑒−𝑖(2𝑁𝑥−
2𝑁

1+𝑁
𝑡) − 𝑒−𝑖(2𝑁𝑥−

2𝑁

1+2𝑁
𝑡)]

 

(24) 

where 𝛾𝑁 =
2𝑁2

(1+𝑁)(1+2𝑁)
. Therefore 

𝜑(𝑥, 𝑡) =
1

2
𝑁−2𝑠+1 1

𝛾𝑁(1+2𝑁)
[cos (2𝑁𝑥 −

2𝑁

1+2𝑁
𝑡) − cos (2𝑁𝑥 −

2𝑁

1+𝑁
𝑡)]   (25) 

Hence, 

∥ 𝜑(⋅, 𝑡) ∥𝐻𝑝𝑒𝑟
𝑠

2 ∼ 𝑁−4𝑠 |𝑒−𝑖
2𝑁

1+2𝑁
𝑡 − 𝑒−𝑖

2𝑁

1+𝑁
𝑡|

2

(1 + 4𝑁2)𝑠 ∼ 𝑁−2𝑠(1 − cos (𝛾𝑁𝑡)).       (26) 

Note that ∥ 𝜓 ∥𝐻𝑝𝑒𝑟
𝑠

2 ∼ 1, then for all 𝑡 ∈ (0, 𝑇) we have 

∥𝜑(⋅,𝑡)∥𝐻𝑝𝑒𝑟
𝑠

∥𝜓∥
𝐻𝑝𝑒𝑟

𝑠
𝑠 ∼ 𝑁−𝑠(1 − cos (𝛾𝑁𝑡))

1

2                             (27) 

Without loss of generality we can suppose 0 < 𝑇 < 2𝜋. For 𝑠 < 0 fixed, we obtain that 

∥𝜑(⋅,𝑡)∥𝐻𝑝𝑒𝑟
𝑠

∥𝜓∥
𝐻𝑝𝑒𝑟

𝑠
𝑠 ⟶ +∞           (28) 

as 𝑁 → +∞, for all 0 < 𝑡 < 𝑇, which contradict (29). 

As a consequence we get the next result. 

Corollary Fix 𝑠 < 0. There does not exist a 𝑇 > 0 such that admits a unique local solution defined on the 

interval [−𝑇, 𝑇] and such that for any fixed 𝑡 ∈ [−𝑇, 𝑇] the map𝜓 ⟼ 𝑢(𝑡) 

is C2 differentiable at zero from 𝐻per 
𝑠  to 𝐻per 

𝑠 . 

Proof. Consider the Cauchy problem 

{
𝑢𝑡 + 𝑢𝑥 + 𝑢𝑢𝑥 + ℋ𝑢𝑥𝑡 = 0

𝑢(𝑥, 0) = 𝜓𝛾(𝑥), 0 < 𝛾 ≪ 1
(29) 

where 𝜓𝛾(𝑥): = 𝛾𝜓(𝑥). Suppose that 𝑢(𝛾, 𝑡, 𝑥) is a local solution of (30) and the map data-solution is 𝐶2 at the 

origin from 𝐻per 
𝑠  to 𝐻𝑝𝑒𝑟

𝑠 . Then 

∂𝑢

∂𝛾
(𝛾, 𝑡, 𝑥)|

𝛾=0
= 𝑆(𝑡)𝜓(𝑥)                             (30) 
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and 

∂2𝑢

∂𝛾
(𝛾, 𝑡, 𝑥)|

𝛾=0
= −2 ∫  

𝑡

0
𝑆(𝑡 − 𝜏)Λ[(𝑆(𝜏)𝜓)(𝑆(𝜏)𝜓)𝑥]𝑑𝜏                           (31) 

Using the assumption, we have 

∥∥∫  
𝑡

0
 𝑆(𝑡 − 𝜏)Λ[(𝑆(𝜏)𝜓)(𝑆(𝜏)𝜓)𝑥]𝑑𝜏∥∥𝐻𝑝𝑒𝑟

𝑠 ⩽ 𝑐0 ∥ 𝜓 ∥𝐻𝑝𝑒𝑟
𝑠

2                      (32) 

The final estimate mirrors that in equation (33), which was demonstrated to be invalid in the preceding theorem. 

We now extend the same type of results to the nonperiodic setting. In this context, we have 

𝑆(𝑡)𝜓(𝑥) = ∫  
ℝ

𝜓̂(𝜉)𝑒
𝑖(𝜉𝑥−

𝜉

1+[𝜉𝜉
𝑡)

𝑑𝜉and Λ𝑢̂(𝜉) = (1 + |𝜉|)−1𝑢̂(𝜉), for 𝜉 ∈ ℝ               (33) 

Theorem. Fix 𝑠 < 0. There does not exist 𝑎𝑇 > 0 such that admits a unique local solution defined on the 

interval [−𝑇, 𝑇] and such that for any fixed 𝑡 ∈ [−𝑇, 𝑇] the map𝜓 ⟼ 𝑢(𝑡) 

is 𝐶2 differentiable at zero from 𝐻𝑠(ℝ) to 𝐻𝑠(ℝ). 

The following lemma is found in equation 34. 

∫  
𝑡

0
𝑆(𝑡 − 𝜏)Λ[(𝑆(𝜏)𝜓)(𝑆(𝜏)𝜓)𝑥]𝑑𝜏 = 𝑐0 ∫  

ℝ2 𝑒𝑖(𝜉𝑥−𝑝(𝜉)𝑡) 𝜉

1+|𝜉|
𝜓̂(𝜂)𝜓̂(𝜉𝜂)

𝑒−𝑖𝑡𝜒(𝜉,𝜂)−1

𝜒(𝜉,𝜂)
𝑑𝜂𝑑𝜉                         (34) 

where 𝑝(𝜉) =
𝜉

1+|𝜉|
 and 𝜒(𝜉, 𝜂) = 𝑝(𝜂) + 𝑝(𝜉 − 𝜂) − 𝑝(𝜉). 

Proof of Theorem 35. We define 

𝜑(𝑥, 𝑡): = ∫  
𝑡

0
𝑆(𝑡 − 𝜏)Λ[(𝑆(𝜏)𝜓)(𝑆(𝜏)𝜓)𝑥]𝑑𝜏              (35) 

Then, using the last lemma we have 

𝜑̂(𝜉, 𝑡) = 𝑐0

𝜉

1 + |𝜉|
𝑒−𝑖𝑝(𝜉)𝑡 ∫  

ℝ

  𝜓̂(𝜂)𝜓̂(𝜉 − 𝜂)
𝑒−𝑖𝑡𝜒(𝜉,𝜂) − 1

𝜒(𝜉, 𝜂)
𝑑𝜂 (35) 

In this case we consider 

𝜓̂(𝜉): = 𝑁−𝑠𝜒[𝑁,𝑁+1](𝜉),  with 𝑁 ∈ ℕ, 𝑁 ≫ 1(36) 

where 𝜒𝐴 denotes the characteristic function of 𝐴. Note that ∥ 𝜓 ∥𝐻𝑠(ℝ)∼ 1 and using (3.7) we obtain 

𝜑̂(𝜉, 𝑡) = 𝑐0
𝜉

1+|𝜉|
𝑒−𝑝(𝜉)𝑡𝑁−2𝑠 ∫  

Ω𝜉

𝑒−𝑖𝑡𝜒(𝜉,𝜂)−1

𝜒(𝜉,𝜂)
𝑑𝜂          (37) 

with Ω𝜉 = {𝜂: 𝜂 ∈ supp 𝜓̂ and 𝜉 − 𝜂 ∈ supp 𝜓̂}. Since 𝑠 < 0, we can choose 𝜖 > 0 such that −𝑠 − 𝜖 > 0. Now, 

consider 𝑡 = 𝑁−𝜖 and note that for 𝜉 ∈ (2𝑁 +
1

2
, 2𝑁 + 1) we have 𝜇(Ω𝜉) ≳ 1. It is easy to see that 

𝜒(𝜉, 𝜂) =
𝜂(𝜉−𝜂)(2+𝜉)

(1+𝜂)(1+𝜉−𝜂)(1+𝜉)
⩽ 3, ∀𝜂, 𝜉 − 𝜂 ∈ [𝑁, 𝑁 + 1]  (38) 

Then, for 𝑁 big enough we compute that 
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∥ 𝜑(⋅, 𝑡) ∥𝐻𝑠(ℝ)
2 ≳ ∫  

2𝑁+1

2𝑁+
1

2

  (1 + |𝜉|2)𝑠𝑁−4𝑠 |𝜉|2

(1+|𝜉|)2 |𝑡|2 |∫  
Ω𝜉

 
𝑒−𝑖𝑡𝜒(𝜉,𝜂)−1

𝑡𝜒(𝜉,𝜂)
𝑑𝜂|

2

𝑑𝜉

≳ ∫  
2𝑁+1

2𝑁+
1

2

  (1 + |𝜉|2)𝑠𝑁−4𝑠 |𝜉|2

(1+|𝜉|)2 |𝑡|2 |∫  
Ω𝜉

 
sin (𝑡𝜒(𝜉,𝜂))

𝑡𝜒(𝜉,𝜂)
𝑑𝜂|

2

𝑑𝜉

≳ 𝑁−4𝑠𝑁2𝑠𝑡2.

      (39) 

Hence 1 ∼∥ 𝜓 ∥𝐻𝑠(ℝ)≳∥ 𝜑(⋅, 𝑡) ∥𝐻𝑠(ℝ)≳ 𝑁−𝑠−𝜖, which, for N≫1, presents a contradiction. Consequently, the 

demonstration in the nonperiodic scenario is thereby concluded. 

 

 

4. Criteria for Stability in Equations of the BBM Type 

The theoretical framework established for the rBO equation is broadened to encompass the family of equations 

in this section, wherein H is articulated as𝐻𝑢̂(𝑛) = 𝛼(𝑛)𝑢̂(𝑛), ∀𝑛 ∈ ℤ 

The It is posited that the symbol α represents an even, real, measurable, and locally bounded function defined on 

R, which adheres to the conditions outlined in (5.3). The traveling wave solutions ϕ_c in the equation (40) 

correspond to 

𝑐𝐻𝜙𝑐 + (𝑐 − 1)𝜙𝑐 −
1

𝑝 + 1
𝜙𝑐

𝑝+1
= 0 (40) 

Equation (41) is recognized as embodying the subsequent two principles of conservation. 

𝐸(𝑢) =
1

2
∫  

𝐿

−𝐿

𝑢𝐻𝑢 −
2

(𝑝 + 1)(𝑝 + 2)
𝑢𝑝+2𝑑𝑥  and 𝐹(𝑢) =

1

2
∫  

𝐿

−𝐿

𝑢𝐻𝑢 + 𝑢2𝑑𝑥(41) 

and so By utilizing these principles, we deduce that the periodic solution is represented by Equation (42). 𝜙𝑐 

satisfies 𝐸′(𝜙𝑐) + (𝑐 − 1) × 𝐹′(𝜙𝑐) = 0. Now, define 

ℒ: = 𝐸′′(𝜙𝑐) + (𝑐 − 1)𝐹′′(𝜙𝑐) = 𝑐𝐻 + (𝑐 − 1) − 𝜙𝑐
𝑝

(42) 

Then the operator ℒ: 𝐷(ℒ) → 𝐿per 
2 ([−𝐿, 𝐿])is self-adjoint, closed, linear, and unbounded, and it is delineated on 

a dense subset of 𝐿per 
2 ([−𝐿, 𝐿]). It is additionally apparent that Lϕ_c^'=0. The ensuing fundamental criteria 

emerge from the stability proof of the rBO equation 

(𝐶0)A continuous spectrum of periodic solutions exhibiting significant characteristics is present for (43). 

of the form 𝑐 ∈ 𝐼 ⊂ ℝ → 𝜙𝑐 ∈ 𝐻per 

𝑚2([−𝐿, 𝐿])(43); 

(𝐶1) ℒ has an unique negative eigenvalue and it is simple; 

(𝐶2) the eigenvalue zero is simple; 

 (C3) 
𝑑

𝑑𝑐
∫  

𝐿

−𝐿

  [𝜙𝑐𝐻𝜙𝑐 + 𝜙𝑐
2]𝑑𝑥 > 0 (44) 

Subsequently, we delineate sufficient criteria for the operator L associated with problem  to derive conditions 

(C_1) and (C_2). The ensuing statement represents the principal criterion for stability.  
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 Let 𝜙𝑐 be a positive even solution of  (44). Assume that 𝜙̂𝑐 > 0 and 𝜙𝑐
𝑝̂

∈ 𝑃𝐹 (2) discrete, then (𝐶1) and (𝐶2)) 

hold for the operator ℒ in (45). 

Evidence. It is essential to recognize that the operator L may be expressed asℒ𝑢 = (𝑀 + 𝑐)𝑢 − 𝜙𝑐
𝑝

𝑢, where 

𝑀 = 𝑐𝐻 − 1. The symbol of 𝑀 is 𝜁(𝑛) = 𝑐𝛼(𝑛) − 1. So, it is easy to see that for all 𝑐 ≠ 0 there exists 𝑁0 ∈ ℕ 

such that 

𝐵1|𝑛|𝑚1 ⩽ |𝜁(𝑛)| ⩽ 𝐵2(1 + |𝑛|)𝑚2 , ∀𝑛 ⩾ 𝑁0       (45) 

where 𝐵1 =
𝑐𝐴1

2
 and 𝐵2 = 𝑐𝐴2 + 1Subsequently, one may apply Theorem 5.1 to ascertain that, in the presence 

of the operator ℒ, the conditions 𝐶1 and 𝐶2 are satisfied. Applying the We obtain a continuous trajectory of 

positive cnoidal waves characterized by a period L through the application of the Implicit Function Theorem 

form: 

𝑐 ∈ (𝑐∗, +∞) ↦ 𝜙𝑐 ∈ 𝐻per
𝑛 ([0, 𝐿])                    (46) 

for all 𝑛 ∈ ℕ, with 𝑘: = 𝑘(𝑐) being a continuously differentiable function of c exhibiting a precise monotonic 

increase (figure 1). Subsequently, we select the velocity w of the solitary-wave solution ϕ_w such that it 

becomes 𝜓𝑤in (47) pertaining to the periodic traveling wave solution of the BBM equation.Specifically, for 𝑐 ∈

(𝑐∗, +∞), we define 𝑤 = 𝑤(𝑐) as: 

 

Figure. 1. Graphic of 𝑐(𝑘) with 𝐿 = 8. 

𝑤(𝑐): =
16𝑐√𝑘4−𝑘2+1𝐾′(𝑘)

16𝑐√𝑘4−𝑘2+1𝐾′(𝑘)−𝑐+1
    (47) 

where 𝑘 = 𝑘(𝑐) ∈ (0, 𝑘𝐿). Using the definition of 𝑤 and equation (47), we find: 

√
𝑤

𝑤 − 1
=

𝐿𝐾′

𝐾
 

Then, from equations (48) and (49), we obtain the cnoidal profile: 

𝜓𝑤(𝑐)(𝜉) =
12𝑤

𝐿
√

𝑤 − 1

𝑤
+

24𝐾2𝑤

𝐿2
[dn2 (

2𝐾𝜉

𝐿
; 𝑘) −

𝐸

𝐾
] (48) 
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Since 
𝐾(𝑘)

𝐾′(𝑘)
∈ (0, 𝐿), for all 𝑘 ∈ (0, 𝑘𝐿), then for 𝑐 ∈ (𝑐∗, +∞) we obtain 𝑤(𝑐) ∈ (1, +∞). Therefore, we get that 

the map 

𝑐 ∈ (𝑐∗, +∞) ⟼ 𝜓𝑤(𝑐) ∈ 𝐻𝑝𝑒𝑟
𝑛 ([0, 𝐿])                             (49) 

is a uniformly symmetrical curve for every n in the set of natural numbers𝑛 ∈ ℕ. 

The stability result for the BBM equation is stated as follows: 

Theorem. Assume 𝐿 > 2𝜋 is fixed. If 𝑐 >
𝐿2

𝐿2−4𝜋2, Subsequently, in accordance with the dynamics delineated by 

the BBM equation, the periodic traveling wave solution ϕ_c articulated in (50) exhibits stability. 

Proof. From equation (50-53), we have: 

 

𝜙𝑐 = 𝑎(𝑘(𝑐)) −
24𝑐

𝐿
√

𝑤−1

𝑤
+

2𝑐

𝑤
𝜓𝑤(𝑘(𝑐))    (50) 

where 

 

𝑎(𝑘) =
16𝑐𝐾

𝐿2
[3𝐸 − (1 + 𝑘′2)𝐾] + 𝑐 − 1                             (51) 

 

𝜙𝑐(𝑥) = 𝑠(𝑘(𝑐)) +
2𝑐

𝑤
𝜓𝑤(𝑘(𝑐))(𝑥)                             (52) 

𝑠(𝑘(𝑐)): = 𝑎(𝑘(𝑐)) −
24𝑐

𝐿
√

𝑤 − 1

𝑤
                                                   (53) 

We can then easily determine the Fourier coefficients of 𝜙𝑐 for ∈ ℤ and figure 2: 

 

Figure. 2. Graphic of 𝑎̃(𝑘) with 𝐿 = 8. 
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𝜙̂𝑐(𝑛) = {

𝑎(𝑘), 𝑛 = 0

12𝑐𝜋

𝐿2 𝑛csch (√
𝑤

𝑤−1

𝜋𝑛

𝐿
) , 𝑛 ≠ 0

                             (54) 

Now, by using that 
𝑐−1

𝑐
=

16𝐾2√1−𝑘2+𝑘4

𝐿2  we obtain 

𝑠(𝑘) = 𝑐 [
16𝐾2

𝐿2 (√1 − 𝑘2 + 𝑘4 − 2 + 𝑘2 + 3
𝐸

𝐾
) −

24

𝐿2

𝐾(𝑘)

𝐾(𝑘′)
] =: 𝑐𝑠̃(𝑘)              (55) 

and 

𝑎(𝑘) =
16𝐾2𝑐

𝐿2 [3
𝐸

𝐾
− 2 + 𝑘2 + √1 − 𝑘2 + 𝑘4] =: 𝑐𝑎̃(𝑘)     (56) 

Considering that a(k) represents a positive and strictly monotonic increasing function within the interval (0,1), 

and the function s ˜ is also positive in (0, 𝑘𝐿) (as 𝑎̃ is strictly increasing, Fig. 2), we can conclude that 𝜙̂𝑐 ∈

PF(2) discrete. 

Next, we demonstrate condition (𝐶3) in equation (57). Specifically, it is straightforward to verify that 𝜒 =

−
𝑑

𝑑𝑐
𝜙𝑐 satisfies 

ℒ𝜒 = 𝜙𝑐 − 𝜙𝑐
′′. Then by Parseval theorem, it follows that 𝐼 = −

𝐿

2

𝑑

𝑑𝑐 ∥∥
∥(1 + | ⋅ |2)

1

2𝜙̂𝑐∥∥
∥

𝑙2

2

. But, 

𝑑

𝑑𝑐 ∥∥
∥(1 + | ⋅ |2)

1

2𝜙̂𝑐∥∥
∥

𝑙2

2

= 2𝑎(𝑘)
𝑑𝑎

𝑑𝑘

𝑑𝑘

𝑑𝑐
+ 𝑐1 ∑  𝑛∈ℤ

𝑛≠0

  (1 + |𝑛|2)𝑛2 csch2 (√
𝑤

𝑤−1

𝜋𝑛

𝐿
)

+ 𝑐2((𝑤 − 1)3𝑤)−
1

2
𝑑𝑤

𝑑𝑘

𝑑𝑘

𝑑𝑐
∑  𝑛∈ℤ

𝑛≠0

  (1 + |𝑛|2)𝑛3 csch2 (√
𝑤

𝑤−1

𝜋𝑛

𝐿
) coth (√

𝑤

𝑤−1

𝜋𝑛

𝐿
)

(57) 

 

where 𝑐1 = 𝑐1(𝐿, 𝑐) > 0 and 𝑐2 = 𝑐2(𝐿, 𝑐) > 0. To prove that 𝐼 < 0 we only need to show that 
𝑑𝑤

𝑑𝑘
> 0, because 

𝑏𝑛 = (1 + |𝑛|2)𝑛3csch2 (√
𝑤

𝑤−1

𝜋𝑛

𝐿
) coth (√

𝑤

𝑤−1

𝜋𝑛

𝐿
)a sequence that is affirmative and 𝑘 = 𝑘(𝑐) is a an 

algorithm that exhibits a strictly increasing behavior. Consequently, predicated on the established equivalence 

𝑑𝑤

𝑑𝑘
=

2𝐿2𝐾′𝐾 [𝑘′ 𝑑𝐾

𝑑𝑘
− 𝐾

𝑑𝐾′

𝑑𝑘
]

(𝐿2𝐾′2 − 𝐾2)2
, ∀𝑘 ∈ (0, 𝑘0)                                                   (58) 

we have that 
𝑑𝑤

𝑑𝑘
> 0 since 

𝑑𝐾

𝑑𝑘
> 0 and 

𝑑𝐾′

𝑑𝑘
< 0.  Thusrefer to Benjamin for further details. The nonlinear 

stability of solitary waves associated with the rBO equation. Furthermore, proposed a periodic family of 

traveling wave solutions known as the stable positive cnoidal waves ϕ_c in 𝐻per 
1 ([0, 𝐿]) under the periodic flow 

of the BBM equation. 

5. Conclusion  

After regularization, the Benjamin-Ono and Benjamin-Bona-Mahony (BBM) equations, which are pivotal in 

describing wave phenomena like internal waves in deep stratified fluids and long surface waves in shallow 

waters, demonstrate improved mathematical properties and enhanced stability. Regularization addresses the 

issues of singularities and ill-posedness often encountered in their original formulations. By introducing 

corrective terms or smoothing mechanisms, regularization ensures that the solutions to these nonlinear partial 
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differential equations are more tractable and less prone to abrupt changes or numerical instabilities. This 

adjustment not only refines the mathematical integrity of the models but also broadens their scope of 

applicability in accurately simulating real-world wave dynamics. 

Furthermore, the regularized forms of the Benjamin-Ono and BBM equations retain their core physical 

relevance while being more suited for computational analysis. They offer a balanced approach by preserving 

key wave characteristics, such as amplitude and velocity profiles, over longer time frames without succumbing 

to the breakdowns typical in non-regularized models. This makes them invaluable for both theoretical research 

and practical applications, such as predicting the behavior of waves in oceans and other fluid bodies, where 

accuracy and stability are critical. Consequently, regularization enhances our understanding of complex wave 

interactions, making these equations more reliable tools in the study of fluid dynamics and related fields. 
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